Über die Margulessche Lösung der Gleichung von Duhem II¹.

(Ergebnisse an beschränkt mischbaren binären Systemen.)

Von

L. Ebert, H. Tschamler, O. Fischer und F. Kohler.

Aus dem I. Chemischen Laboratorium der Universität Wien.

Mit 6 Abbildungen.

(Eingelangt am 28. Okt. 1949. Vorgelegt in der Sitzung am 10. Nov. 1949.)

Mit Hilfe der zweigliedrigen Entwicklung für die Partialdrucke p_1 und p_2 nach *M. Margules*:

$$p_1/p_{1,0} = x_1 \cdot e^{\frac{\alpha_2}{2}x_2^2 + \frac{\alpha_3}{3}x_2^3}$$
; $p_2/p_{2,0} = x_2 \cdot e^{\frac{(\alpha_2 + \alpha_3)}{2}x_1^2 - \frac{\alpha_3}{3}x_1^3}$ (1a, 1b)

wird die freie Mischungsenthalpie einer binären Mischung:

$$\Delta G_{\rm ber} = x_1 \, RT \ln \left(p_1 / p_{1,0} \right) + x_2 \, RT \ln \left(p_2 / p_{2,0} \right) \tag{2}$$

eine Funktion der x_i und der zwei Konstanten α_2 und α_3 .

Die dreigliedrige Entwicklung nach M. Margules (O. Redlich und A. T. Kister) sowie andere Lösungsansätze (J. v. Laar²; G. Scatchard und W. J. Hamer³) werden hier zunächst nicht diskutiert.

Im folgenden werden wir experimentelle Ergebnisse an Systemen mit Mischungslücke mitteilen, da nach älteren Überlegungen von L. Ebert⁴ die α_2 - und α_3 -Werte einer zweigliedrigen Margules-Entwicklung in diesen Fällen unabhängig von Dampfdruckmessungen aus dem isothermen Zustandsdiagramm, das heißt aus den Sättigungskonzentrationen zugänglich sind. Die beschränkte Mischbarkeit bedingt in dieser Systemklasse verständlicherweise große Abweichungen vom idealen Verhalten bezüglich der Partial- und Totaldampfdruckkurven, der Mischungswärmen, deren Temperaturabhängigkeit usw.

⁴ Arbeit I, Abschn. II.

¹ Arbeit I: L. Ebert, H. Tschamler und H. Wächter, Mh. Chem. 80, 731 (1949) (Kurzmitteilung). Dort gegebene Zitate werden hier nicht nochmals wiederholt.

² Z. physik. Chem. 72, 723 (1910).

³ J. Amer. chem. Soc. 57, 1805 (1935).

L. Ebert, H. Tschamler, O. Fischer und F. Kohler:

Die Anwendung des zweigliedrigen Ansatzes nach *M. Margules* wurde an drei von uns selbst gemessenen und an zwei von anderen Autoren gemessenen, binären beschränkt mischbaren Systemen geprüft. Die Ergebnisse werden hier in der gleichen Reihenfolge mitgeteilt, in der sie in der Arbeit I, Abschn. III geordnet sind.

Vergleich der gemessenen Mischungswärmen mit den nach L. Ebert aus der Mischungslücke und ihrer Temperaturabhängigkeit berechneten Werten.

a) Anilin—Cyclohexan (eigene Messungen).

Die Sättigungskonzentrationen sind in Arbeit I, Abschn. III/1 mitgeteilt⁵. Die hieraus für $x_{\rm A} = 0,900$ und alle Temperaturen von 5° bis 25° C berechneten α -Werte finden sich in Tabelle I, Spalten 2 und 3. Mit Gl. (1) und (2) werden die ΔG -Werte (Tabelle 1, Sp. 4) berechnet. Hieraus folgen: $\Delta S_{\rm ber} = -\partial \Delta G_{\rm ber}/\partial T$ (Sp. 5 und 6) und $\Delta H_{\rm ber} = \Delta G_{\rm ber}$ $+ T\Delta S_{\rm ber}$ (Sp. 7 und 8). Sp. 5 und 7 gelten für je 5° Temperaturdifferenz; Sp. 6 und 8 für die Differenz der beiden Grenztemperaturen.

Man überzeugt sich leicht, daß diese $\Delta H_{\rm ber}$ -Werte identisch sind mit den nach Gl. (5), Arbeit I, berechneten Werten. Wir geben die aus den jeweils kleinsten Temperaturintervallen ermittelten $\Delta H_{\rm ber}$, sowie den Mittelwert über das ganze Temperaturgebiet an.

 ΔH_{\exp}^{25} und c_p^{25} wurden im homogenen Gebiet gemessen. ΔC_p^{25} ist für $x_A = 0,900$ gleich — 0,4 cal/Grad. Die Sp. 9 ist hiermit nach der Kirchhoffschen Gleichung berechnet.

Temperatur °C	α ₂	α3	ΔG_{ber}	⊿s _{ber}	⊿s _{ber}	⊿H _{ber}	⊿ <i>H</i> ber	∆H _{exp}
$25,0 \\ 22,5 \\ 20,0 \\ 17,5 \\ 15,0 \\ 12,5 \\ 10,0 \\ 7,5 \\ 5,0 \\ 10$	$2,77 \\ \\ 3,05 \\ \\ 3,15 \\ \\ 3,28 \\ \\ 3,22$	3,23 -3,36 3,76 -4,11 4,68	$ \begin{vmatrix} -87,4 \\ -82,1 \\ -77,5 \\ -72,6 \\ -68,3 \\ -64,7 \\ -61,6 \\ -58,8 \\ -56,9 \end{vmatrix} $	<pre>} 1,98 } 1,84 } 1,34 } 0,94</pre>	1,53	+504 +462 +318 +205	+ 371	+ 184 + 185 + 187 + 188 + 189 + 191

Tabelle 1. Vergleich von $\Delta H_{\rm ber}$ mit $\Delta H_{\rm exp}$ beim System Anilin—Cyclohexan für $x_{\rm A} = 0,900$ zwischen 5° und 25°C.

Bei der Konzentration $x_A = 0,900$ könnte also Übereinstimmung zwischen $\Delta H_{\rm ber}$ und $\Delta H_{\rm exp}$ nur bei noch tieferen Temperaturen als 7,5° C

⁵ Vgl. die Berichtigung Mh. Chem. 81, 462 (1950)!

552

eintreten, das heißt bei Temperaturen, wo $\Delta H_{\rm ber}$ wegen der sehr geringen Sättigungskonzentrationen schon recht unsicher wird. Bei 25°C, wo die *x*-Werte durchaus sicher bekannt sind, ist die berechnete Mischungswärme ein *Mehrfaches* der experimentellen.

b) Anilin-n-Hexan.

Für dieses System wurden sämtliche für unsere Arbeit maßgebenden Größen von den gleichen Autoren⁶ gemessen. Die Auswertung erfolgt wie unter a.

Temperatur °C	<i>a</i> 2	æ3	$\varDelta G_{ m ber}$	$\varDelta s_{ m ber}$	${}^{\varDelta S}_{ m ber}$	⊿ <i>H</i> _{ber}	⊿H _{ber}	⊿ H _{exp}
$50 \\ 45 \\ 40 \\ 35 \\ 30 \\ 25 \\ 20$	4,54 4,90 4,93 4,81	$ \begin{array}{c} 0,09 \\ \\ 0,32 \\ \\ 1,06 \\ \\ 2,00 \end{array} $	$\begin{vmatrix} -72,0 \\ -65,3 \\ -59,3 \\ -54,2 \\ -50,0 \\ -46,4 \\ -43,9 \end{vmatrix}$	$ \left. \begin{array}{c} 1,27 \\ 0,93 \\ 0,61 \end{array} \right. \right\} $	0,94	+339 +232 +135 	+ 235	[52,7]

Tabelle 2. Vergleich von $\varDelta H_{\rm ber}$ und $\varDelta H_{\rm exp}$ beim System Anilin—n-Hexan für $x_A = 0,916$ zwischen 20° und 50° C.

Nach den von den Autoren selbst als vorläufig bezeichneten Messungen der Mischungswärmen sollte bei $x_A = 0,916$ sein: $\Delta H_{\exp}^{40} = 52,7$ cal/Mol Mischung; in diesem Falle wäre überhaupt keine Übereinstimmung zwischen $\Delta H_{\rm ber}$ und ΔH_{\exp} zu erhalten. Da uns dieser experimentelle ΔH -Wert im Vergleich zu anderen ähnlichen Systemen sehr klein erschien, haben wir eine ΔH -Messung bei 25° C ausgeführt und für $x_A = 0,915$ den Wert $\Delta H_{\exp}^{25} = 126$ cal/Mol Mischung gefunden. Dies würde zwar bei 25° C eine annähernde Übereinstimmung bedeuten. Daß aber, zumindest bei höheren Temperaturen, wieder sehr große Abweichungen auftreten, läßt sich aus Tabelle 2 leicht ersehen; denn, wenn auch ΔC_p hier nicht bekannt ist, dürfte ein derart starker positiver Temperaturgang des ΔH_{\exp} , wie er hier bei $\Delta H_{\rm ber}$ vorliegt, völlig ausgeschlossen sein (vgl. unten Abschn. 2).

c) Chlorex-2,2,4-Trimethylpentan (eigene Messungen⁷).

Tabelle 3 zeigt die wie bei a geführte Auswertung. ΔH_{\exp}^{25} ergab sich bei $x_{Chl} = 0.960$ zu 84 cal, ΔC_p^{25} zu — 0.6 cal/Grad. Vorbehaltlich der Zulässigkeit einer linearen Extrapolation von ΔH_{\exp}^{25} nach

⁶ D. B. Keyes und J. H. Hildebrand, J. Amer. chem. Soc. 39, 2126 (1917).

⁷ H. Tschamler, F. Wettig und E. Richter, Mh. Chem. 80, 572 (1949).

°C	a ₂	a3	⊿G _{ber}	$\Delta S_{ m ber}$	$\Delta s_{ m ber}$	⊿ H ber	⊿H _{ber}	∆H _{exp}
+15 + 10 + 5 0 - 5 - 10 - 15 - 20 - 25 - 30 - 35 - 40 - 45	4,00 4,22 	$\begin{array}{c} 0,18\\ 0,24\\\\ 0,36\\\\ 0,54\\\\ 0,54\\\\ 0,84\\\\ 0,84\\\\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \left. \begin{array}{c} 0,74 \\ 0,68 \\ 0,61 \\ 0,51 \\ 0,45 \\ 0,35 \end{array} \right. $	0,56	+161 +145 +126 +99 +83 +61	+ 113	+ 91 + 94 + 109

Tabelle 3. Vergleich von $\Delta H_{\rm ber}$ und $\Delta H_{\rm exp}$ beim System Chlorex-2,2,4-Trimethylpentan für $x_{\rm Chl} = 0,960$ zwischen + 15° und - 45°C.

Kirchhoff besteht hier in der Temperaturzone um -15° C Übereinstimmung zwischen ΔH_{exp} und ΔH_{ber} . Bei höheren Temperaturen wird

Abb. 1. $\Delta H_{\text{ber}}^{15}$ und ΔH_{\exp}^{15} des Systems Chlorex — 2, 2, 4-Trimethylpentan.

Bei honeren Temperaturen wird $\Delta H_{\rm ber}$ zu groß, bei niedrigeren zu klein. Unsere Messungen⁷ erlauben es uns, bei diesem System für $+15^{\circ}$ C den Unterschied zwischen $\Delta H_{\rm ber}^{15}$ und $\Delta H_{\rm exp}^{15}$ über den ganzen Konzentrationsbereich zu zeigen (Abb. 1); $\Delta H_{\rm exp}^{15}$ wurde aus $\Delta H_{\rm exp}^{25}$ mit ΔC_p^{25} errechnet.

d) Chlorex—n-Octan (eigene Messungen⁷).

Dieses System ist dem System c sehr ähnlich, so daß einige Zahlenangaben genügen. Für $x_{\rm Chl} = 0,030$ beträgt $\Delta H_{\rm exp}^{25} =$ = 84 cal/Mol Mischung, $\Delta C_p^{25} =$

- 0,13 cal/Grad. Bei 15° C erhalten wir $\Delta H_{\rm ber} = 145$ cal/Mol; $\Delta H_{\rm exp} = 85$ cal/Mol. $\Delta H_{\rm ber}$ sinkt — wie bei c — sehr stark mit sinkender Temperatur, bei — 45° C beträgt es nur noch ~ 40 cal/Mol. Die Temperaturgegend, wo sich die Kurven der beiden Werte $\Delta H_{\rm exp}$ und $\Delta H_{\rm ber}$ schneiden, liegt wiederum bei etwa — 15° C.

554

Über die Margulessche Lösung der Gleichung von Duhem II. 555

e) n-Hexan—Methanol (Messungen von V. Rothmund⁸, G. v. Elbe⁹ und von K. L. Wolf, H. Pahlke und K. Wehage¹⁰).

II II OIL			~_	H ,,,,	0 2010			
Temperatur °C	æ	<i>a</i> 3	$\varDelta G_{\mathrm{ber}}$	$\Delta s_{ m ber}$	$\Delta S_{ m ber}$	⊿ <i>H</i> ber	ΔH_{ber}	∆H _{exp}
35	4,87	0,66	-12,2	5	$\overline{\mathbf{n}}$			_
30			-11,5	0,14		+29,7	—	
25	5,90	1,76		R			—	+26
20				0,10	0,10	+19,0	+19,0	
15	6,53	-2,29	9,9	R				
10			9,6	} 0,07		+9,2		
5	6,67	-2,03	9,2))	—		

Tabelle 4. Vergleich von $\Delta H_{\rm ber}$ und $\Delta H_{\rm exp}$ beim System n-Hexan-Methanol für $x_H = 0.995$ zwischen 5° und 35°C.

Hier wurde eine sehr nahe dem reinen n-Hexan liegende Konzentration gewählt, um ausdrücklich zu prüfen, ob die bei den Beispielen a bis d für merkliche Konzentrationen gefundenen Diskrepanzen im Gebiet höchst verdünnter Lösungen verschwinden. Tabelle 4 gibt die Auswertung der offenbar sehr sorgfältigen Messungen wieder. Das Bild ist qualitativ noch das gleiche, nur liegt zufällig das Gebiet des Schnittes der $\Delta H_{\rm ber}$ -und $\Delta H_{\rm exp}$ -Kurven nahe (etwas oberhalb) 25° C. Nach tieferen Temperaturen zu sinkt $\Delta H_{\rm ber}$ auch hier sehr stark ab. —

Für alle untersuchten Systeme gibt die zweigliedrige Lösung der Duhem-Margulesschen Gleichung bestenfalls Werte der richtigen Größenordnung von $\Delta H_{\rm ber}$. Stets sind die $\Delta H_{\rm ber}$ -Werte bei hohen Temperaturen (oft viel!) zu hoch und sinken mit fallender Temperatur sehr stark ab, in manchen Fällen auf Bruchteile von $\Delta H_{\rm exp}$.

2. Die Temperaturabhängigkeit der Mischungswärme.

Nach H. Wächter (vgl. Arbeit I, Abschn. III/3) läßt sich Gl. (2) für ΔG_{ber} im Rahmen der Margulesschen Lösung unter Verwendung der Koeffizienten h_1 und h_2

 $h_1 = \alpha_2/_2 + \alpha_3/_3;$ $h_2 = \alpha_2/_2 + \alpha_3/_6$

umformen zu:

 $\label{eq:def-def-ber} \varDelta G_{\rm ber} = R \ T \ (x_1 \ln x_1 + x_2 \ln x_2) + R \ T \ x_1 \ x_2 \ (x_1 \ h_2 + x_2 \ h_1),$ hiermit wird:

$$\frac{\partial (\Delta G_{\text{ber}}/T)}{\partial T} = - \Delta H_{\text{ber}}/T^2 = R \, x_1 \, x_2 \, (x_1 \, h_2' + x_2 \, h_1')$$
$$\Delta H_{\text{ber}} = - R \, T^2 \, x_1 \, x_2 \, (x_1 \, h_2' + x_2 \, h_1'), \tag{3}$$

und

wobei $h_1' = \partial h_1 / \partial T$ und $h_2' = \partial h_2 / \partial T$ bedeuten.

- ⁹ J. chem. Physics 2, 73 (1934).
- ¹⁰ Z. physik. Chem., Abt. B 28, 1 (1934).

⁸ Z. physik. Chem. 26, 455 (1898).

Wie aus der Tabelle in Arbeit I und aus unserer Tabelle 1 für das System Anilin—Cyclohexan ersichtlich ist, hängen die h-Werte annähernd linear von der Temperatur ab und werden mit steigender Temperatur kleiner; dies gilt auch für die anderen von uns geprüften Systeme. Demnach sind h_1' und h_2' in unseren Systemen durchwegs negativ und angenähert konstant. Somit wird nach Gl. (3) ΔH_{ber} positiv und angenähert proportional T^2 . Das heißt, daß ΔH_{ber} mit steigender

Abb. 2. $\Delta H_{\rm ber}$ von System a) (Anilin—Cyclohexan; $x_A = 0,900$) und System c) (Chlorex—i-Octan; $x_{\rm Chl} = 0,960$) als Funktionen der Temperatur, im Vergleich zu den Werten von $\Delta H_{\rm exp}$. [Maßstab von ΔH für System a) rechts, für System c) links.]

Temperatur zunehmen, bzw. mit fallender Temperatur abnehmen mu β , ganz im Einklang mit unseren Tabellen 1 bis 4, Sp. 7; nach Kirchhoff mu β also ΔC_{pber} überall stark positiv sein.

Im Gegensatz zu diesem Verhalten von $\Delta H_{\rm ber}$ sind aber alle gemessenen ΔC_p -Werte *negativ* (Anilin-Cyclohexan; Chlorex-n-Octan und -i-Octan⁷). Auch aus den $\Delta H_{\rm exp}^{45}$ und $\Delta H_{\rm exp}^{25}$ -Werten des Systems n-Hexan-Methanol^{9, 10} ergibt sich eindeutig, daß $\Delta H_{\rm exp}$ mit fallender Temperatur anwächst.

Abb. 2 illustriert noch an zwei Beispielen diese fundamentale Diskrepanz.

Somit stimmt die Temperaturabhängigkeit von ΔH_{ber} und ΔH_{exp} an allen geprüften Systemen *nicht einmal dem Vorzeichen nach* überein.

3. Die Kurvenform von $\Delta H/x_1 x_2$ als f(x).

Nach der von *H. Wächter* formulierten Gl. (3) muß bei Anwendung der *zwei*gliedrigen Lösung der Ausdruck:

$$\begin{split} \psi_{\mathrm{II}} &= \varDelta H/x_1 \; x_2 = - R \; T^2 \left(x_1 \, h_2' \, + \, x_2 \, h_1' \right) = - R \; T^2 \left[x_1 \left(h_2' - h_1' \right) \, + \, h_1' \right] \\ \text{eine lineare Funktion des Molenbruches } x_1 \; \text{sein} \; ; \; \psi_{\mathrm{exp}} = \varDelta H_{\mathrm{exp}}/x_1 \; x_2 \\ \text{sollte also als } f \left(x_1 \right) \; \text{aufgetragen, eine Gerade ergeben.} \end{split}$$

Wie die Abb. 3 und 4 zeigen, ist auch diese Konsequenz der zweigliedrigen Lösung keineswegs erfüllt. Insbesondere sind die beiden Anfangsteile $(x_i \rightarrow 1)$ der Kurven so stark nach oben gekrümmt, daß die zweigliedrige Lösung hier auch als erste rohe Annäherung endgültig fallen muß. Über die Margulessche Lösung der Gleichung von Duhem II. 557

Uber die Auswertung der Funktion ψ an homogenen binären Mischungen wird gesondert berichtet werden.

4. Vergleich der berechneten Partialdampfdruckkurven mit den experimentellen.

Für eine Prüfung der Darstellung der Partialdampfdruckkurven nach Gl. (1) über den ganzen Mischungsbereich haben wir zwei Reihen von α_2 - und α_3 -Werten zugrunde gelegt, nämlich:

A. solche, die aus den experimentellen *Partial*dampfdruckkurven durch Anpassung nach der Methode der kleinsten Fehlerquadrate, bzw.

Abb. 3. $\Delta H_{\exp}^{25}/x_1 x_2$ als $f(x_1)$ des Systems Anilin--Cyclohexan.

Abb. 4. $\Delta H_{\exp}^{25/x_1 x_2}$ als $f(x_1)$ der Systeme Chlorex—i-Octan (I) und —n-Octan (II).

aus experimentellen Totaldampfdruckkurven auf Grund eines von A. Musil und E. Schramke benützten Ausgleichverfahrens von A. Huber¹¹ gewonnen wurden, und

B. solche, die aus der *Mischungslücke* nach dem in Arbeit I, Abschn. II geschilderten Rechnungsverfahren gewonnen wurden.

Die Abb. 5a, 5b, 5c und die Tabellen 5, 6 und 7 enthalten für das System Anilin (1)—Cyclohexan (2) die von uns gemessenen Totaldrucke¹². Wie man sieht, betragen die Dampfdrucke des reinen Anilins 0,4; 0,8 und 1,3 Torr bei 15°; 25° und 40° C. Die Größen p_1 der Teildrucke des Anilins sind also in allen Fällen quantitativ sehr unbedeutend und spielen für unsere Diskussion keine Rolle, da die Differenzen zwischen

¹¹ E. Schramke, Dissert. Wien, 1946. A. Musil und E. Schramke, Acta Phys. Austr. 3, 309 (1950).

¹² Methodik: *H. Tschamler* und *F. Kohler*, Mh. Chem. 81, 463 (1950); mittlerer Fehler: ± 1 Torr.

 $(p_1 + p_2)_{exp}$ und $(p_2)_{ber}$ wesentlich größer sind als p_1 . — Tabelle 8 vergleicht den über der Mischungslücke gemessenen Teildruck von n-Hexan

Abb. 5. Partialdampfdruckkurven von Cyclohexan über Anilin—Cyclohexan-Mischungen bei 15° (a) 25° (b) und 40° C (c). [experimentell: _____; berechnet nach A): ____.; berechnet nach B):-----.]

des Systems Anilin (1)—n-Hexan (2)⁶ mit der Berechnung nach B. — Abb. 6 und Tabelle 9 geben den Vergleich der experimentell gemessenen Total- und Teildrucke des Systems Methanol (1)—n-Hexan (2)¹³ mit

Abb. 6. Die Totaldampfdrucke und der Partialdampfdruck von Methanol im System Methanol—n-Hexan für 45° C.

den Berechnungen nach A und B knapp über der KLT.

Die in den Tabellen angegebenen experimentellen Werte für runde Molenbrüche wurden durch Interpolation gewonnen. Die nach B berechneten Kurven für die Systeme Anilin--Cyclohexan bei 40° C und n-Hexan-Methanol bei 45° C sind durch eine recht kurze Extrapolation der aus der Mischungslücke errechneten *x*-Werte erhalten worden. In den Tabellen 5,6 und 8 sind die Sättigungskondurch stärkere zentrationen Umrahmung hervorgehoben.

Zu A. Die aus den experimentellen Partialdampfdruck-

kurven nach dem *zwei*gliedrigen Ansatz berechneten α -Werte geben die Lage der Mischungslücke völlig falsch wieder (vgl. besonders Abb. 5 b und Tabelle 6); sie verlangen durchwegs noch merklich oberhalb der KLT

¹⁸ J. B. Ferguson, J. physic. Chem. 36, 1125 (1932).

Tabelle 5. Dampfdrucke im System Anilin (1)-Cyclohexan (2) bei 15°C.	
Tabelle 5. Dampfdrucke im System Anilin (1)-Cyclohexan (2) bei	15° C.
Tabelle 5. Dampfdrucke im System Anilin (1)-Cyclohexan (2)	bei
Tabelle 5. Dampfdrucke im System Anilin (1)-Cyclohexan	(2)
Tabelle 5. Dampfdrucke im System Anilin	(1)-Cyclohexan
Tabelle 5. Dampfdrucke im System	Anilin
Tabelle 5. Dampfdrucke im	\mathbf{System}
Tabelle 5. Dampfdrucke	im
Tabelle 5.	Dampfdrucke
	Tabelle 5.

Über die Margulessche Lösung der Gleichung von Duhem II.

559

									x_{Ani}	lin							
		0,0	0,05	0,093	0,1	0,2	0,3	, 0,4	0,5	0,6	0,7	0,8	0,815	0,85	0,9	0,95	1,0
$egin{pmatrix} (p_1+p_2)\ (p_2) \end{pmatrix}$	experimentell berechnet nach B	60, 6 60, 6	57,0 58,0	56,0 56,6	56,5	55,3	56,1	58,4	56,0 61,5	63,7	64,4	58,2	56,0 56,6	52,4 51,1	$\begin{array}{c c} 47,2 \\ 40,3 \end{array}$	33,5 23,2	$^{0,4}_{0}$
	Tabelle 6. D	amp	fdruc	ke i	S S S	stem	Apil	(I) (I)	C v	elohe	u axa	(2) b.	ei. 25°	ů.			
		4			,				^x Ani	lin							
		0,0	0,1	0,170	0,2	0,3	0,4	0,5	0,6	0,7	0,708	0,75	0,8	0,85	6,0	0,95	1,0
(p_1+p_2)	éxperimentell	96,7 96 7	90,3 80 5	89,0 83,7	0 68	107		89,0 77 s	0 69	2 2 2 2	89,0 85,7	87,5 86.1	84,5 84,5	80,8 81,8	71.3	17,2	0,8
(P2)	berechnet nach B	96,7	89,5	87,0	86,2	86,0	87,4	89,5	89,3	87,4	87,0	82,9	76,4	65,9	50,9	29,0	0
	Tabelle 7. D	amp	fdrue	ke in	n Sv	stem	Anil	lin (I))—Cv	clohe	Xan	(2) b.	ei 40'	°.			
		•			,				•	x_{Anilin}							
			0,0	0		0,2	0,3	0	.4	0,5	0,6		0,7	0,8	0,9		1,0
$(p_1 + p_2)$	experimentell	:	183	17:	2	175	174	17.	2,5	170,5	167		53 19	156,5	119,		ۍ ۲
(P_{2})	berechnet nach B	::	183	16.	0,07 0,07	158,8 158,8	152,	0 10 7 14	8,5 5,5	108,0 143,5	172, 136,		30,0	107,0	66,	00 0 1/2	

Monatshefte für Chemie. Bd. 81/4.

37

Tabelle 8.	Partialdruck von n-	.Hexal 40'	o übe ° C (D	$\stackrel{\mathrm{r}}{.} \stackrel{\mathrm{der}}{B.Ke}$	Miscl yes un	nungsl d J.H	ücke (. Hildel	des S $rand^6$)	ystems	Anil	lin (1)-	H-u-H	exan (.	2) bei
								x_{Anilin}						
		0,0	0,1	0,138	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,860	0,9	1,0
(p_2)	experimentell berechnet nach B	290.5 290.5	267,8	277, 1 261		256,2	263,0	$277,1\\276,0$	292,0	304,5	296,5	277,1 261	227	00
Tabell	e 9. Die <i>Total</i> - und .	Parti	aldar	npfdrı (J.	ucke B.Fe	des Sy rguson ¹²	/stems ').	s Metl	hanol (J	- u(Hexa	n (2) 1	3ei 45	ç
								^x Methar	loi					- -
		0,0		0,1	0,2	0,3	0,4	0,5	0,6	°,	2	0,8	0,9	1,0
	experimentell		73 0	96	308	310	311	311	312	31	2 31	[3	315	328
(b_1)	berechnet nach A		00	7.63 7.63	342	351 952 6	335 961 E	320	300 364	29	1 20	32	304 200	328 996
	Derechtiev nacht D	•		4	24T	400°0	201,02	707	#07 	-	2		000	070
	experimentell	33	ං 	61	318	317	316	316	315	31	5 31	14	301	0
(p_2)	berechnet nach A	. 33	3 3 3	808	294	293	300	316	336	35	4 35	20	275	0
	berechnet nach B	 	ಣ 	101	292	284	281,5	281	278	26	6 25	33,5	157	0
	experimentell	33	3	15	626	627	627	627	627	62	1 62	57	616	328
$(p_1 + p_2)$	berechnet nach A	. 33	3	171	636	644	635	636	636	64	5 64	12	579	328
r 1 1	berechnet nach B	. 33	3 4	10	533	541	543	543	542	53	6 51	[4	457	328

560

eine der Entmischung entsprechende Kurvenform (vgl. Abb. 5c und 6, bzw. Tabelle 7 und 9), ein Verhalten, auf das bereits $A. F. Orlicek^{14}$ beim System n-Heptan—Äthanol gestoßen ist.

Die aus den *Total*dampfdruckkurven berechneten α -Werte führen zu noch unrichtigeren berechneten Partialdampfdruckkurven (vgl. Abb. 6 und Tabelle 9), da sich Fehler der Teildruckkurven bei der Summierung zur Totaldampfdruckkurve kompensieren können (ein Minimum der Fehlerquadrate bei der Totaldampfdruckkurve bedeutet nicht gleichzeitige Minima der Fehlerquadrate für beide Partialdampfdruckkurven!).

Zu B. Die aus den Sättigungskonzentrationen berechneten Partialdampfdruckkurven (Tabellen 5 bis 9) geben die experimentellen Druckkurven in ihrem gesamten Verlauf nicht richtig wieder. Im Bereich der Mischungslücke sind die Abweichungen relativ gering, was aus der Gewinnung dieser α -Werte wohl verständlich ist. Speziell für das System Anilin—Cyclohexan ist aus den Abb. 5a, 5b und 5c ersichtlich, daß mit fallender Temperatur eine gewisse Annäherung der nach B berechneten an die experimentellen Partialdampfdruckkurven erfolgt, ein Ergebnis, das im Einklang mit den Befunden bei den Mischungswärmen steht. Doch darf diese Annäherung keinesfalls überschätzt werden, weil es durchaus naheliegend ist, daß nach Durchschreiten der Temperaturzone annähernder Übereinstimmung Diskrepanzen in der anderen Richtung auftreten können, ebenso wie dies bei dem Vergleich der ΔH -Werte (vgl. Abb. 2) der Fall ist.

Zusammenfassung.

Die in der Arbeit I (Kurzmitteilung) angekündigten experimentellen Belege (Messungen von ΔH , ΔC_p , Partial- und Totaldrucke) für die Kritik der zweigliedrigen Margulesschen Lösung der Gleichung von Duhem werden ausführlich mitgeteilt. An fünf binären Systemen mit Mischungslücke erweist sich die zweigliedrige Lösung durchwegs als quantitativ unbrauchbar; selbst bezüglich der Darstellung der Verhältnisse in den Randgebieten müssen ernste Bedenken erhoben werden.

¹⁴ Österr. Chemiker-Ztg. 50, 86 (1949).